Finetune a Model
Description
The FINETUNE
statement lets you retrain a model with additional training data.
Imagine you have a model that was trained with a certain dataset. Now there is more training data available and you wish to retrain this model with a new dataset. The FINETUNE
statement lets you partially retrain the model, so it takes less time and resources than the RETRAIN
statement. In the machine learning literature, this is also referred to as fine-tuning a model.
Syntax
Here is the syntax:
FINETUNE project_name.model_name
FROM integration_name
(SELECT column_name, ... FROM table_name)
[USING
key = value,
...];
Where:
Expressions | Description |
---|---|
project_name | Name of the project where the model resides. |
model_name | Name of the model to be retrained. |
integration_name | Name of the integration created using the CREATE DATABASE statement or file upload. |
(SELECT column_name, ... FROM table_name) | Selecting additional data to be used for retraining. |
USING key = value | Optional. The USING clause lets you pass multiple parameters to the FINETUNE statement. |
Model Versions
Every time the model is retrained/adjusted, its new version is created with an incremented version number. Unless overridden, the most recent version becomes active when training completes.
You can query for all model versions like this:
SELECT *
FROM project_name.models_versions;
For more information on managing model versions, check out our docs here.
Example 1: Regression Model
In this example, we use our sample PostgreSQL database. You can connect to it like this:
CREATE DATABASE example_db
WITH ENGINE = "postgres",
PARAMETERS = {
"user": "demo_user",
"password": "demo_password",
"host": "3.220.66.106",
"port": "5432",
"database": "demo"
};
First, we create and train the model using a subset of the home_rentals
data, considering properties that have been on the market less than 10 days.
CREATE MODEL mindsdb.adjust_home_rentals_model
FROM example_db
(SELECT *
FROM demo_data.home_rentals
WHERE days_on_market < 10)
PREDICT rental_price;
On execution, we get:
Query successfully completed
We can check its status using this command:
SELECT *
FROM mindsdb.models
WHERE name = 'adjust_home_rentals_model';
Once the status is complete, we can query for predictions.
SELECT rental_price, rental_price_explain
FROM mindsdb.adjust_home_rentals_model
WHERE sqft = 1000
AND location = 'great'
AND neighborhood = 'berkeley_hills'
AND number_of_rooms = 2
AND number_of_bathrooms = 1
AND days_on_market = 40;
On execution, we get:
+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------+
| rental_price | rental_price_explain |
+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------+
| 2621 | {"predicted_value": 2621, "confidence": 0.99, "anomaly": null, "truth": null, "confidence_lower_bound": 2523, "confidence_upper_bound": 2719} |
+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------+
Letβs adjust this model with more training data. Now we consider properties that have been on the market for 10 or more days.
FINETUNE mindsdb.adjust_home_rentals_model
FROM example_db
(SELECT *
FROM demo_data.home_rentals
WHERE days_on_market >= 10);
On execution, we get:
Query successfully completed
To check the status and versions of the model, run this command:
SELECT name, engine, project, active, version, status
FROM mindsdb.models_versions
WHERE name = 'adjust_home_rentals_model';
On execution, we get:
+---------------------------+-----------+---------+--------+---------+----------+
| name | engine | project | active | version | status |
+---------------------------+-----------+---------+--------+---------+----------+
| adjust_home_rentals_model | lightwood | mindsdb | false | 1 | complete |
| adjust_home_rentals_model | lightwood | mindsdb | true | 2 | complete |
+---------------------------+-----------+---------+--------+---------+----------+
Please note that the longer the property is on the market, the lower its rental price. Hence, we can expect the rental_price
prediction to be lower.
SELECT rental_price, rental_price_explain
FROM mindsdb.adjust_home_rentals_model
WHERE sqft = 1000
AND location = 'great'
AND neighborhood = 'berkeley_hills'
AND number_of_rooms = 2
AND number_of_bathrooms = 1
AND days_on_market = 40;
On execution, we get:
+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------+
| rental_price | rental_price_explain |
+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------+
| 2055 | {"predicted_value": 2055, "confidence": 0.99, "anomaly": null, "truth": null, "confidence_lower_bound": 1957, "confidence_upper_bound": 2153} |
+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------+
Example 2: Classification Model
In this example, we again use our sample PostgreSQL database.
First, we create and train the model using a subset of the customer_churn
data, considering only female customers.
CREATE MODEL mindsdb.adjust_customer_churn_model
FROM example_db
(SELECT *
FROM demo_data.customer_churn
WHERE gender = 'Female')
PREDICT churn;
On execution, we get:
Query successfully completed
We can check its status using this command:
SELECT *
FROM mindsdb.models
WHERE name = 'adjust_customer_churn_model';
Once the status is complete, we can query for predictions.
SELECT churn, churn_explain
FROM mindsdb.adjust_customer_churn_model
WHERE seniorcitizen = 0
AND partner = 'Yes'
AND dependents = 'No'
AND tenure = 1
AND phoneservice = 'No'
AND multiplelines = 'No phone service'
AND internetservice = 'DSL';
On execution, we get:
+--------+------------------------------------------------------------------------------------------------------------------------------------------------------------+
| churn | churn_explain |
+--------+------------------------------------------------------------------------------------------------------------------------------------------------------------+
| No | {"predicted_value": "No", "confidence": 0.9887640449438202, "anomaly": null, "truth": null, "probability_class_No": 0.934, "probability_class_Yes": 0.066} |
+--------+------------------------------------------------------------------------------------------------------------------------------------------------------------+
Letβs adjust this model with more training data. Now we also consider male customers.
FINETUNE mindsdb.adjust_customer_churn_model
FROM example_db
(SELECT *
FROM demo_data.customer_churn
WHERE gender = 'Male');
On execution, we get:
Query successfully completed
To check the status and versions of the model, run this command:
SELECT name, engine, project, active, version, status
FROM mindsdb.models_versions
WHERE name = 'adjust_customer_churn_model';
On execution, we get:
+-----------------------------+-----------+---------+--------+---------+----------+
| name | engine | project | active | version | status |
+-----------------------------+-----------+---------+--------+---------+----------+
| adjust_customer_churn_model | lightwood | mindsdb | false | 1 | complete |
| adjust_customer_churn_model | lightwood | mindsdb | true | 2 | complete |
+-----------------------------+-----------+---------+--------+---------+----------+
Letβs query for a prediction again.
SELECT churn, churn_explain
FROM mindsdb.adjust_customer_churn_model
WHERE seniorcitizen = 0
AND partner = 'Yes'
AND dependents = 'No'
AND tenure = 1
AND phoneservice = 'No'
AND multiplelines = 'No phone service'
AND internetservice = 'DSL';
On execution, we get:
+--------+--------------------------------------------------------------------------------------------------------------------------------------------------------------+
| churn | churn_explain |
+--------+--------------------------------------------------------------------------------------------------------------------------------------------------------------+
| No | {"predicted_value": "No", "confidence": 0.9887640449438202, "anomaly": null, "truth": null, "probability_class_No": 0.9294, "probability_class_Yes": 0.0706} |
+--------+--------------------------------------------------------------------------------------------------------------------------------------------------------------+
Here after adjusting the model, there are no significant changes to the predictions. However, the probability class for Yes
and No
values has been updated. The probability of a Yes
value has increased slightly, while the probability of a No
value has decreased.
Example 3: OpenAI Model
All OpenAI models belong to the group of Large Language Models (LLMs). By definition, these are pre-trained on large amounts of data. However, it is possible to fine-tune these models with a task-specific dataset for a defined use case.
OpenAI supports fine-tuning of some of its models, including davinci
, curie
, babbage
, and ada
(more details here). And with MindsDB, you can easily fine-tune an OpenAI model making it more applicable to your specific use case.
Letβs create a model to answer questions about MindsDBβs custom SQL syntax.
First, create an OpenAI engine, passing your OpenAI API key:
CREATE ML_ENGINE openai_engine
FROM openai
USING
api_key = 'your-openai-api-key';
Then, create a model using this engine:
CREATE MODEL openai_davinci
PREDICT completion
USING
engine = 'openai_engine',
model_name = 'davinci',
prompt_template = 'Return a valid SQL string for the following question about MindsDB in-database machine learning: {{prompt}}';
You can check model status with this command:
DESCRIBE openai_davinci;
Once the status is complete, we can query for predictions:
SELECT prompt, completion
FROM openai_davinci as m
WHERE prompt = 'What is the SQL syntax to join input data with predictions from a MindsDB machine learning model?'
USING max_tokens=400;
On execution, we get:
+---------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+
| prompt | completion |
+---------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+
| What is the SQL syntax to join input data with predictions from a MindsDB machine learning model? | The SQL syntax is: SELECT * FROM input_data INNER JOIN predictions ON input_data.id = predictions.id |
+---------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+
If you followed one of the MindsDB tutorials before, youβll see that the syntax provided by the model is not exactly as expected.
Now, weβll fine-tune our model using a table that stores details about MindsDBβs custom SQL syntax.
Here is a table weβll use to fine-tune our model:
SELECT prompt, completion
FROM files.openai_learninghub_ft;
And here is its content:
+---------------------------------------------------------------------------------------------------+------------------------------------------+
| prompt | completion |
+---------------------------------------------------------------------------------------------------+------------------------------------------+
| What is the SQL syntax to connect a database to MindsDB? | CREATE DATABASE datasource_name |
| | [WITH] [ENGINE [=] engine_name] [,] |
| | [PARAMETERS [=] { |
| | "key": "value", |
| | ... |
| | }]; |
| | |
| What is the SQL command to create a home rentals MindsDB machine learning model? | CREATE MODEL |
| | mindsdb.home_rentals_model |
| | FROM example_db |
| | (SELECT * FROM demo_data.home_rentals) |
| | PREDICT rental_price; |
| | |
| What is the SQL syntax to join input data with predictions from a MindsDB machine learning model? | SELECT t.column_name, p.column_name, ... |
| | FROM integration_name.table_name [AS] t |
| | JOIN project_name.model_name [AS] p; |
+---------------------------------------------------------------------------------------------------+------------------------------------------+
This is how you can fine-tune an OpenAI model:
FINETUNE openai_davinci
FROM files
(SELECT prompt, completion FROM openai_learninghub_ft);
The FINETUNE
command creates a new version of the openai_davinci
model. You can query all available versions as below:
SELECT *
FROM models_versions
WHERE name = 'openai_davinci';
Once the new version status is complete and active, we can query the model again, expecting a more accurate output.
SELECT prompt, completion
FROM openai_davinci as m
WHERE prompt = 'What is the SQL syntax to join input data with predictions from a MindsDB machine learning model?'
USING max_tokens=400;
On execution, we get:
+---------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+
| prompt | completion |
+---------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+
| What is the SQL syntax to join input data with predictions from a MindsDB machine learning model? | SELECT * FROM mindsdb.models.my_model JOIN mindsdb.input_data_name; |
+---------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+